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1 Summary

Spectral Toolkit of Algorithms for Graphs (STAG) is an open-source C++ and Python library of efficient spec-tral algorithms for graphs. Our objective is to implement advanced graph algorithms developed throughalgorithmic spectral graph theory, while making it practical to end users. This series of technical reports isto document our progress on STAG, including implementation details, engineering considerations, and thedata sets against which our implementation is tested. The report is structured as follows:
• Section 2 describes the local clustering algorithm, which is the main update in this STAG release. Thediscussion is at a high level such that domain knowledge beyond basic algorithms is not needed.
• Section 3 provides a user guide to the essential features of STAG which allow a user to apply localclustering.
• Section 4 includes experiments and demonstrations of the functionality of STAG.
• Finally, Section 5 discusses several technical details; these include our choice of implemented al-gorithms, the default setup of parameters, and other technical choices. We leave these details tothe final section, as it’s not necessary for the reader to understand this when using STAG.

1.1 Implemented Algorithms

STAG 1.2 provides an implementation of the following key algorithms.
Local Graph Clustering. Given a large graph and some starting vertex v in the graph, the goal of localgraph clustering is to find some cluster containing v. Moreover, the running time of the algorithm shoulddepend only on the size of the returned cluster and should be independent of the total size of the graph [11].STAG provides the first open-source local clustering algorithm which does not require the entire graphto be loaded into memory. This allows users to apply local clustering on massive graphs stored on disk oreven in a cloud database, such as Neo4j1. Section 4 demonstrates these applications.
Spectral Clustering. One of the most fundamental algorithms from Spectral Graph Theory is the spectralclustering algorithm [8, 10, 13]. Spectral clustering is “global” in the sense that it returns a partition of theentire vertex set of the graph.
Generating Graphs fromRandomModels. The Stochastic BlockModel (SBM) and Erdős-Rényi model arepopular random graph models which are frequently used to evaluate and analyse graph algorithms. STAGprovides several convenient methods to generate graphs from these models.

2 Local Graph Clustering

Graph clustering algorithms are designed to partition an input graph into two or more clusters. As a basictechnique in data science andmachine learning, graph clustering hasmany applications in numerous areasof computer science and beyond. Most graph clustering algorithms need to read an entire input graph forthe clustering task, which is computationally expensive if the graph is massive. If one is interested only insome “local” cluster information, then local graph clustering provides a more efficient method.Typically, the objective of local graph clustering is to find some highly-connected vertex set (cluster) inan input graph. Let’s assume that S is a highly-connected vertex set of an underlying undirected graphG,i.e., S forms a cluster. Then, a local clustering algorithm is given some vertex v ∈ S as input, and returnssome set S′ such that S′ is a reasonable approximation of the target set S. Moreover, the running time
1https://neo4j.com/
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Figure 1: Given a massive graph containing some small cluster S, a local clustering algorithm takes as inputa vertex v ∈ S and returns an approximation of S without exploring the whole graph.
of the algorithm is proportional to the size of S and independent of the size of G. In applications, localclustering can be viewed as a search for related objects: given a query vertex, a local clustering algorithmreturns a set of closely related vertices. Figure 1 illustrates local graph clustering.Andersen, Chung, and Lang [1] introduced a key local clustering algorithm which we refer to as theACL algorithm. At a high level, the algorithm finds a local cluster by analysing the behaviour of randomwalks on the graph, beginning at the starting vertex. The ACL algorithm has proved extremely useful andhas inspired extensive further research and applications [2, 7, 12, 14]. The local_cluster method of STAGprovides an implementation of the ACL local clustering algorithm.Existing open-source local clusteringmethods require that the entire graph is loaded into RAM in orderto apply the local algorithm. In this sense, they are not truly “local” since they cannot be applied to graphslarger than the available memory and the total running time depends on the size of the graph. STAGprovides the first open-source local clustering algorithm which can be applied to massive graphs withoutloading them into RAM. Moreover, the provided interface is simple and the algorithm can be applied tographs stored in memory, on disk, or in a Neo4j database.

3 User’s Guide to Local Graph Clustering with STAG

This section provides a guide to the essential features of STAG which allow a user to apply local clustering.Section 3.1 describes how to install the STAG C++ and STAG Python libraries. Then, Section 3.2 introducesthe graph file formats supported by STAG and demonstrates the methods for reading and writing graphsto disk. Finally, Section 3.3 explains the graph classes provided by STAG and Section 3.4 documents the
local_clustermethod for local clustering.Althoughmost of the examples in this section use C++, the functionality of STAG C++ is also available inSTAG Python. Appendix B includes example code demonstrating how to perform local clustering with STAGPython. The full documentation of STAG C++ and STAG Python is available on the STAG library website.
3.1 Installation of STAG

This section describes how to install STAG for use with C++ and Python.
Installing STAG for C++. STAG is built on the Eigen and Spectra C++ libraries, and these must be installedbefore STAG. For information on installing Eigen and Spectra, please refer to their documentation. Forconvenience, Appendix A provides a bash script which, at the time of writing, will install Eigen and Spectraon a standard Linux system. Then, the latest version of STAG should be downloaded from

https://github.com/staglibrary/stag/releases.
After downloading and extracting the source code, STAG can be compiled and installed with cmake.

1 mkdir build_dir
2 cd build_dir
3 cmake ..
4 sudo make install
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Once STAG has been installed, it is available for use in C++ projects built with the cmake build tools. Thefollowing cmake code will link a C++ project with STAG.
1 find_package(stag REQUIRED)
2 include_directories(${STAG_INCLUDE_DIRS })
3 target_link_libraries(YOUR_PROJECT stag)

An example STAG project demonstrating the full cmake configuration is available at
https://github.com/staglibrary/example-stag-project.

Installing STAG for Python. STAG Python can be installed from the Python Package Index with the piptool.
1 python -m pip install stag

Then, the modules of STAG can be directly imported into any Python script.
3.2 File Formats

STAG supports two simple file formats for storing graphs on disk: EdgeList and AdjacencyList. Many graphdatasets are provided in EdgeList format [6], and will work directly with STAG.
EdgeList File Format. In an EdgeList file, each line corresponds to one edge in the graph. A line consistsof two integer node IDs and an optional edge weight, all separated with spaces. Here is an example of asimple EdgeList file.

1 # This is a comment
2 0 1 0.5
3 1 2 1
4 2 0 3

In this example, line 2 defines an edge between nodes 0 and 1 with weight 0.5.
AdjacencyList File Format. In an AdjacencyList file, each line corresponds to one node in the graph. Aline consists of the node ID, followed by a list of adjacent nodes. The node IDs at the beginning of each linemust be sorted in increasing order. Here is an example of a simple AdjacencyList file.

1 # This is a comment
2 0: 1 2
3 1: 0 3 2
4 2: 0 1
5 3: 1

In this example, node 1 has edges to nodes 0, 2, and 3.
Workingwith Files. STAGprovides severalmethods for reading, writing, and converting betweenEdgeListand AdjacencyList files, as demonstrated in the following example.

1 #include <stag/graphio.h>
2 ...
3 // Read an AdjacencyList graph
4 std:: string filename = "mygraph.adjacencylist";
5 stag::Graph myGraph = stag:: load_adjacencylist(filename);
6
7 // Save an EdgeList graph
8 std:: string new_filename = "mygraph.edgelist";
9 stag:: save_edgelist(myGraph , new_filename);
10
11 // Convert an AdjacencyList to EdgeList directly
12 stag:: adjacencylist_to_edgelist(filename , new_filename);
13 ...
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3.3 Graph Classes

STAG provides several graph classes which can be applied for a wide variety of applications. Figure 2 sum-marises the available graph classes.

Disk

RAM

Database

⇐⇒

⇐⇒

⇐⇒

LocalGraph
local_cluster

AdjacencyListLocalGraph
filename: String

Graph
adjacency: Eigen Matrix

Neo4jGraph
database: Neo4j Driver

Figure 2: The graph classes provided by STAG. Every class inherits from the abstract LocalGraph class, whichprovides the local clusteringmethod. The key difference between the different classes is the location of thegraph data. The AdjacencyListLocalGraph class reads node adjacency data from disk, the Graph class storesthe entire graph in RAM, and the Neo4jGraph class queries node adjacency data from a Neo4j database.

The LocalGraph Class. STAG provides an abstract stag::LocalGraph class which defines the data structurenecessary to apply local clustering. The only required method on the data structure is neighbors(v) whichreturns a list of the neighbors of node v. Every graph class provided by STAG inherits from LocalGraph.
The Graph Class. The stag::Graph class is the basic graph object within the STAG library. The class storesthe adjacency matrix of the graph in memory as a sparse matrix.
The AdjacencyListLocalGraph Class. The stag::AdjacencyListLocalGraph class provides an implementa-tion of the stag::LocalGraph interface for a graph stored on disk as an AdjacencyList. The graph is loadedinto memory in a local way only. This allows for local algorithms to be executed on very large graphs storedon disk without loading the whole graph into memory. The following example demonstrates how to createan AdjacencyListLocalGraph with STAG C++.

1 #include <stag/graph.h>
2 ...
3 // Create an AdjacencyListLocalGraph
4 std:: string filename = "mygraph.adjacencylist";
5 stag:: AdjacencyListLocalGraph myGraph(filename);
6
7 // Get the neighbours of node 0
8 std::vector <long long > neighbors = myGraph.neighbors_unweighted (0);
9 ...

The Neo4jGraph Class. STAG Python additionally provides the Neo4jGraph class, which provides an im-plementation of the LocalGraph interface for a graph stored in a Neo4j database. The following exampleshows how to create the Neo4jGraph using the database connection information.
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1 import stag.neo4j
2
3 # Connect to the database
4 uri = "<Database URI >"
5 username = "neo4j"
6 password = "<password >"
7 my_graph = stag.neo4j.Neo4jGraph(uri , username , password)
8
9 # Print the neighbors of node 0
10 print(my_graph.neighbors_unweighted (0))

The Neo4jGraph class provides additional methods for querying the properties of the nodes in the database.The details are available in the full STAG documentation.
3.4 Local Clustering

STAG provides the following local_clustermethod.
1 std::vector <long long > stag:: local_cluster(stag:: LocalGraph* graph ,
2 long long seed_vertex ,
3 double target_volume)

Given a graph and a starting vertex, the local_cluster method finds a cluster close to the starting vertex.The running time of the algorithm is proportional to the size of the returned cluster and independent ofthe size of the entire graph. The parameters of the method are described as follows:
• graph - a LocalGraph object. This could be a Graph, an AdjacencyListLocalGraph, or a Neo4jGraph.
• seed_vertex - the starting vertex in the graph.
• target_volume - an estimate of the volume of the target cluster. This parameter does not impose ahard constraint on the algorithm and so an approximate volume is sufficient.

When working with very large graphs, it is recommended to use the AdjacencyListLocalGraph object forlocal clustering in order to avoid the overhead of reading the entire graph intomemory. Section 4.1 demon-strates the advantage of using the AdjacencyListLocalGraph for local clustering. The following code demon-strates a complete programwhich uses STAG C++ to find a local cluster in a graph stored in an AdjacencyListfile on disk.
1 #include <iostream >
2 #include <stag/graph.h>
3 #include <stag/cluster.h>
4
5 int main() {
6 // Create the graph backed by a large file on disk
7 std:: string filename = "mygraph.adjacencylist";
8 stag:: AdjacencyListLocalGraph mygraph(filename);
9
10 // Perform local clustering
11 int start_vertex = 1;
12 double target_volume = 100;
13 auto cluster = stag:: local_cluster (&mygraph , start_vertex , target_volume);
14
15 // Print the returned cluster
16 for (auto v : cluster) std::cout << v << ", ";
17 std::cout << std::endl;
18 }
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4 Showcase studies

STAG makes local clustering straightforward for a variety of applications, and this section presents someexamples of local clustering with STAG. The code used to produce all experimental results is available at
https://github.com/staglibrary/local-clustering-case-study.

All experiments are performed on an HP ZBook laptop with an 11th Gen Intel(R) Core(TM) i7-11800H @2.30GHz processor and 32 GB RAM.
4.1 Example 1

The advantage of local clustering over other clustering algorithms is that the running time of local clusteringis proportional to the size of the returned cluster and independent of the total size of the graph. If we firstload the entire graph into memory before applying local clustering, then we lose the advantage of thesub-linear running time. For this reason, STAG provides the AdjacencyListLocalGraph class which provideslocal access to a graph stored on disk without reading the entire graph. In this example, we compare therunning time of local clustering on an AdjacencyListLocalGraph object, which accesses the graph locally ondisk, and a Graph object, which loads the entire graph into memory.We generate graphs of various sizes from the stochastic block model as follows. Given parameters k,
p, and q, we create a graph with k clusters C1, . . . Ck, each containing 1,000 vertices. For every pair ofvertices (u, v) ∈ V × V , we add the edge (u, v) with probability p if u and v are in the same cluster andwith probability q otherwise. We always set p = 0.01 and q = 0.001/k. This ensures that the conductanceof the constructed clusters is always close to 0.1.We perform local clustering on the constructed graphs for a random starting node and target volume20,000, and compare the following two methods:

• Inmemory: the entire graph is loaded intomemory as a Graph object before applying local clustering.
• On disk: the graph is read locally from a file on disk with an AdjacencyListLocalGraph object.

Figure 3 shows the running time of the local clustering algorithm for each method across a range of graphsizes. These results demonstrate that for large graphs, the overhead of reading the entire graph intomemory dominates the running time of the algorithm and reading the graph directly from disk is signi-ficantly more efficient.
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Figure 3: The comparison of the running time of local clustering on graphs in memory and on disk. Formassive graphs, reading the graph locally from disk is significantly faster.
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4.2 Example 2

In the second example, we demonstrate the applicability of local clustering for finding sets of related nodesin a real-world graph. We use the wiki-topcats dataset [14] which is a graph of Wikipedia hyperlinks con-structed in 2011. The graph includes the pages in the top 100 Wikipedia categories and includes 1,791,489vertices and 28,511,807 edges. The dataset is available on the SNAP datasets page [6] as an EdgeList file.We convert the EdgeList to an AdjacencyList with the edgelist_to_adjacencylist method, and use the
AdjacencyListLocalGraph object for local clustering.With a few lines of code, STAG allows us to create a “related pages” search using local clustering. Byproviding a search page and setting the target volume to be 100, the local clustering returns a set of pageswhich are closely connected to the search page. Figure 4 shows some example of local clustering resultsfrom the Wikipedia graph.

Search page: Emacs
EmacsRobert J. ChassellZmacsClimacsAquamacsDunnet (game)Bernard GreenbergMacro recorderGNU ManifestoTNT (instant messenger)Agda (theorem prover)

Search page: Stag Hound
Stag HoundOver-canvassed sailingSea Serpent (clipper)Medium ClipperDonald McKayExtreme clipperMemnon (clipper)Flying Cloud (clipper)Eleanor CreesyWeigh anchorStowage

Search page: Stagflation
StagflationAgflationBiflationDifferential accumulationEmbedded liberalismSupply shockShimshon BichlerDouglas HarperOnline savings accountJonathan Nitzan

Figure 4: Example of local clusters found in the Wikipedia dataset.

4.3 Example 3

In this example, we demonstrate local clustering on aNeo4j database in the cloud. Wefirst follow theNeo4jdocumentation to create a cloud database using the AuraDB service [9]. We use the “Movies” exampledataset provided by Neo4j. Then, by creating a Neo4jGraph object with STAG Python, we are able to searchfor related movies using local clustering. Listing 1 shows the complete Python script used to perform thissearch, and Figure 5 shows some of the search results.
1 import stag.neo4j
2 import stag.cluster
3
4 # Initialise the graph object with the Neo4j database credentials
5 uri = "<Database URI >"
6 username = "neo4j"
7 password = "<password >"
8 g = stag.neo4j.Neo4jGraph(uri , user , password)
9
10 # Perform local clustering
11 seed_id = g.query_id("title", "The Matrix")
12 cluster = stag.cluster.local_cluster(g, seed_id , 5)
13
14 # Print the names of the returned movies.
15 for node_id in cluster:
16 title = g.query_property(node_id , ’title’)
17 print(title)

Listing 1: Python code for local clustering with a Neo4j database.
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Search: The Matrix
The MatrixThe Matrix ReloadedThe Matrix RevolutionsV for VendettaNinja Assassin

Search: You’ve Got Mail
You’ve Got MailRescueDawnWhen Harry Met SallyAs Good as It GetsSleepless in SeattleJoe Versus the Volcano

Search: A Few Good Men
A Few Good MenHoffaAs Good as It GetsStand By Me

Figure 5: Example of local clusters found in the Neo4j movies dataset.
5 Technical Considerations

In this sectionwe discuss the technical choicesmade in the design and implementation of STAG.We discussour choice of implemented algorithm, the setting of the default parameters, and the implementation ofthe AdjacencyListLocalGraph class for reading a graph locally from a file on disk.
5.1 Implemented Algorithm

Many algorithms have been proposed for local clustering, including those based on PageRank [1, 2], theevolving set process [3, 4], and network flows [5]. We chose to implement the algorithm based on PageR-ank presented by Andersen, Chung, and Lang [1], and we refer to this as the ACL algorithm. We chosethis algorithm because it is relatively simple, easy to understand, and effective in practice. Furthermore,the theoretical guarantees for the ACL algorithm are optimal up to constant factors.2 The ACL algorithmrequires two parameters:
• the α parameter controls the “teleport probability” of the personalised PageRank; and
• the ε parameter controls the approximation error of the approximate PageRank calculation.

STAG provides the local_cluster_acl method which allows the user to specify the parameters α and εdirectly.
1 std::vector <long long > stag:: local_cluster_acl(stag:: LocalGraph* graph ,
2 long long seed_vertex ,
3 double alpha ,
4 double epsilon)

For convenience, STAG also provides the local_cluster method which requires only an estimate of thevolumeof the target cluster. Given a volume γ, the local_clustermethod uses the parametersα = 1/2000and ε = 1/(20γ) for the ACL algorithm.
5.2 Reading Graphs Locally From Disk

A key feature of STAG is the AdjacencyListLocalGraph class which reads the neighbourhood information ofa graph in a local way from an AdjacencyList file on disk. Since the data in an AdjacencyList file is sortedaccording to the node ID, we can query the neighbors of any node in O(log(n)) time by binary search ofthe AdjacencyList file. As demonstrated in Section 4.1, this additional logarithmic factor in the running timeis much preferable to the cost of reading the entire graph into memory when applying local algorithms tomassive graphs.
2The original analysis by Andersen et al. [1] has an extra factor of log(n) in the approximation guarantee. This factor is notnecessary and has been removed in later analysis using the same technique [7, 12].
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A Installing STAG Dependencies

For convenience, we provide the following bash script for installing the STAG C++ dependencies. At thetime of writing, this will download and install the Eigen and Spectra libraries.
1 # Create a directory to work in
2 mkdir libraries
3 cd libraries
4
5 # Install Eigen
6 wget https :// gitlab.com/libeigen/eigen/-/archive /3.4.0/ eigen -3.4.0. tar.gz
7 tar xzvf eigen -3.4.0. tar.gz
8 cd eigen -3.4.0
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9 mkdir build_dir
10 cd build_dir
11 cmake ..
12 sudo make install
13 cd ../..
14
15 # Install Spectra
16 wget https :// github.com/yixuan/spectra/archive/v1.0.1. tar.gz
17 tar xzvf v1.0.1. tar.gz
18 cd spectra -1.0.1
19 mkdir build_dir
20 cd build_dir
21 cmake ..
22 sudo make install
23 cd ../..

B User Guide Examples using STAG Python

This section includes example code omitted from Section 3 demonstrating how to use STAG Python forlocal clustering.
B.1 Working with Files

The following example demonstrates how to read and write AdjacencyList and EdgeList files with STAGPython.
1 import stag.graphio
2
3 # Read an AdjacencyList graph
4 filename = "mygraph.adjacencylist"
5 myGraph = stag.graphio.load_adjacencylist(filename)
6
7 # Save an EdgeList graph
8 new_filename = "mygraph.edgelist"
9 stag.graphio.save_edgelist(myGraph , new_filename)
10
11 # Convert an AdjacencyList to EdgeList directly
12 stag.graphio.adjacencylist_to_edgelist(filename , new_filename)

B.2 Graph Classes

The following example shows how to create an AdjacencyListLocalGraph object with STAG Python.
1 import stag.graph
2
3 # Create the graph object
4 filename = "mygraph.adjacencylist"
5 my_graph = stag.graph.AdjacencyListLocalGraph(filename)
6
7 # Show the neighbors of node 0
8 print(my_graph.neighbors_unweighted (0))

B.3 Local Clustering

The following example gives a complete program for finding a local cluster in a graph stored in an Adja-cencyList file with STAG Python.
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1 import stag.graph
2 import stag.cluster
3
4 # Create the graph object
5 filename = "mygraph.adjacencylist"
6 mygraph = stag.graph.AdjacencyListLocalGraph(filename)
7
8 # Find a local cluster
9 start_vertex = 1
10 target_volume = 100
11 cluster = stag.cluster.local_cluster(mygraph , start_vertex , target_volume)
12
13 # Display the result
14 print(cluster)
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